Search results

Search for "tapping-mode imaging" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • commercial scanning probe microscopy systems, mainly due to its easy implementation. Nevertheless, there are different ways to operate AM-KPFM. In the simplest form, an AC voltage is applied during normal tapping mode imaging (single scan) at a frequency far below the first resonance ωE << ω0. We refer to
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach

  • Juan Ren and
  • Qingze Zou

Beilstein J. Nanotechnol. 2017, 8, 1563–1570, doi:10.3762/bjnano.8.158

Graphical Abstract
  • quality of the 25 Hz and 20 Hz AMLM imaging is at the same level of that of the 1 Hz TM imaging, while the tip–sample interaction force is substantially smaller than that of the 2 Hz TM imaging. Keywords: adaptive multiloop mode; atomic force microscopy (AFM); heterogeneous polymer sample; tapping-mode
  • imaging; Introduction In this paper, the adaptive-multiloop imaging mode of atomic force microscopy (AFM) is tested and evaluated by imaging three largely different heterogeneous polymer samples. AMLM imaging substantially increases the speed of tapping mode (TM) imaging (by over an order of magnitude
PDF
Album
Full Research Paper
Published 02 Aug 2017

Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

  • Hanaul Noh,
  • Alfredo J. Diaz and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 579–589, doi:10.3762/bjnano.8.62

Graphical Abstract
  • correlating the potential and currents in Figure 4 (PPP-CONTSCPt, NanoSensors) has a smaller spring constant (k = 0.5–1.0 N/m) and thus also a weaker torsional stiffness. In general, it is not possible to sustain a repulsive tapping-mode imaging process for the softer cantilever on polymer samples. On the
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2017

Generalized Hertz model for bimodal nanomechanical mapping

  • Aleksander Labuda,
  • Marta Kocuń,
  • Waiman Meinhold,
  • Deron Walters and
  • Roger Proksch

Beilstein J. Nanotechnol. 2016, 7, 970–982, doi:10.3762/bjnano.7.89

Graphical Abstract
  • for the cantilever to reach a steady state defines the acquisition speed, allowing tapping-mode imaging to achieve very high speeds ultimately only limited by the cantilever bandwidth. However, the small number of tapping-mode observables (amplitude and phase) limits the extraction of absolute storage
  • imaging in ambient conditions has relied on the robustness of AM (tapping-mode) imaging, mostly attributable to the monotonicity of the amplitude versus distance relationship, for stable operation and topography tracking. For these two reasons, the authors generally recommend the use of AM-FM over the
PDF
Album
Full Research Paper
Published 05 Jul 2016

A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

  • Santiago D. Solares

Beilstein J. Nanotechnol. 2015, 6, 2233–2241, doi:10.3762/bjnano.6.229

Graphical Abstract
  • extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily
  • interacting with the Q3D surface model in monomodal tapping-mode imaging (the dashed line is a plot of a Hertzian curve, for reference); (b) illustration of the contributions to the force curve from different concentric-ring surface elements (numbered starting with the element that intersects the tip vertical
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
  • simultaneous focusing of the two laser spots. For these beam waists, we calculate Rayleigh lengths of 33 μm and 160 μm, well within the estimated 13 μm chromatic focal shift of our optical system obtained by using Zemax 13 (Radiant Zemax LLC, Redmond, WA, USA). While piezo-driven tapping mode imaging in liquid
PDF
Album
Full Research Paper
Published 22 Dec 2014

Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

  • Santiago D. Solares,
  • Sangmin An and
  • Christian J. Long

Beilstein J. Nanotechnol. 2014, 5, 1637–1648, doi:10.3762/bjnano.5.175

Graphical Abstract
  • -frequency AFM through the inclusion of a larger number of driven eigenmodes along with the corresponding additional contrast channels. Results and Discussion Tip response in time- and frequency-space The dynamic challenges encountered in multimodal tapping-mode imaging are best appreciated by analyzing the
  • eigenfrequencies are generally not integer multiples of one another [1]. Figure 2b shows several successive tip trajectories for the same cases, for typical tapping-mode imaging conditions (only the lowest portion of the oscillation is shown, near the sample), illustrating how the tip can penetrate into the
  • repulsive tip–sample forces were accounted for through a standard linear solid (SLS) model [9] which exhibits both stress relaxation and creep (see Figure 10 and notice the variety of force and surface trajectories for the single and multiple impacts observed in multimodal tapping-mode imaging [20]). Long
PDF
Album
Full Research Paper
Published 25 Sep 2014

High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

  • Mark Cronin-Golomb and
  • Ozgur Sahin

Beilstein J. Nanotechnol. 2013, 4, 243–248, doi:10.3762/bjnano.4.25

Graphical Abstract
  • frequency response and gain of the torsional mode allows the reconstruction of the tip–sample-force waveforms. A computer program carries out these calculations in real time during the tapping-mode imaging process. The program also corrects for nonlinearities of the position-sensitive diode and for
PDF
Album
Full Research Paper
Published 05 Apr 2013

Combining nanoscale manipulation with macroscale relocation of single quantum dots

  • Francesca Paola Quacquarelli,
  • Richard A. J. Woolley,
  • Martin Humphry,
  • Jasbiner Chauhan,
  • Philip J. Moriarty and
  • Ashley Cadby

Beilstein J. Nanotechnol. 2012, 3, 324–328, doi:10.3762/bjnano.3.36

Graphical Abstract
  • per square micron on the patterned sapphire substrate was achieved. For AFM imaging and manipulation we used an Asylum MFP-3D atomic force microscope in tapping mode (imaging) or contact mode (manipulation) with AC240TS Olympus AFM cantilevers. Several cells were imaged over a large scan, typically 20
PDF
Album
Letter
Published 10 Apr 2012
Other Beilstein-Institut Open Science Activities